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Summary

Visual sight is an important and easy sense of communication. Recently, since com-
puter speed, media storage and network bandwidth have seen great improvements of
their performances, imaging has gained even more importance along with security,
privacy and intellectual property defense.

In order for a complex imaging system to cope with these concerns, a cryptogra-
phy scheme able to manage the vast amounts of data involved in image processing
is required. So far, many image encryption algorithms have been restricted to the
software realm, primarily due to its ease of use, ease of update, portability and
flexibility. But when throughput and secret key storage security become a major is-
sue, hardware implementations are by nature more physically secure and potentially
faster.

This work aims to investigate hardware feasibility and performance of an en-
cryption technique proposed by J. Scharinger, and based on the highly unstable
non-linear dynamics of chaotic Kolmogorov flows. The algorithm is particularly
attractive since only additions, subtractions and bit-shifts are required and no time-
consuming operations like multiplications or exponentiation.

In this context, re-programmable devices such as FPGAs are highly attrac-
tive options since they provide hardware agility, parameterization and develop-
ing cost efficiency. The chip chosen for the implementation is a Xilinx’s Virtex
XCV400BG432-6, whose embedded RAM allows manipulation of small images
directly in situ.

iii
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1 Introduction

After the advent of the Internet and especially nowadays, security of data and pro-
tection of privacy have become a major concern for everyone’s life, although math-
ematicians and researchers have been trying to address this problem since the end
of the World War II, when cryptology science came out from the ambit of the army
to enter the Bell Laboratories. DES, RSA and PGP are only the tip of the iceberg
of a vast amount of cryptographic algorithms developed by those scientists. In fact,
many other cipher systems based on different mathematical properties have been
designed, some of them for specific purposes like the one implemented in this the-
sis.

Combining together two apparently distant sciences like cryptography and chaos
theory, J. Scharinger has proposed a new product cipher whose aim is to guarantee
security and privacy in image and video archival applications. This encryption tech-
nique makes use, during its permutation phase, of the Kolmogorov flows which are
well-known to be dynamically unstable systems. The absence of computationally
heavy operations such as multiplications or divisions makes his algorithm particu-
larly attractive for hardware implementation.

Aside from the two reports by Scharinger [10] [11], very little work seems to
exist on this topic, probably because of a general scepticism by the cryptographic
community about using chaotic systems for encryption purposes. Some theoretical
papers have been produced by Z. Kotulski and J. Szczepañski [7] and during the
Eurocrypt ’91 in general. On the practical side, an attempt to design an electronic
circuit which uses nonlinear dynamic approach in order to send secret messages has
been described in [14, p. 335].

The objective of this thesis consists of demonstrating the feasibility of a Scharin-
ger’s cipher algorithm hardware implementation and of investigating on its features
of throughput and area occupancy.

Since this is one of the first attempts to design in hardware a cryptographic
system that uses chaos theory, parameterization of the circuit, rapidity in project
development and flexibility during test and improvement phases are main issues. To
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cope with these requirements, the couple VHDL-FPGA has been chosen, along with
a divide-and-conquer approach and a software suite provided by Mentor Graphics,
as rapid and efficient development tools.

1.1. Chapter Organization

The main structure of the present work is divided in four parts.
The first chapter gives a general overview of cryptography science, introducing

some basic terminology, the concept of cryptosystems and two fundamental encryp-
tion techniques, permutation and substitution. The chapter continues with general
remarks about chaos which are the background for Kolmogorov chaotic systems and
pseudo-random sequences. Only topics that are needed for the subsequent Scharin-
ger’s algorithm description are presented.

The topic of chapter 3 is related to tools and method adopted in this thesis. A
brief description of what an FPGA is constitutes the first section which in turn is
followed by an explanation of concepts of entity, architecture, configuration and
generic parameter proper to the VHDL language. The final discussion is for the
used development suite and other chosen software tools, along with the adopted
methodology.

Chapter 4 forms the main part of the corpus. Here the fundamental ideas that
have been used to implement in hardware the encryption algorithm are treated. The
chapter opens with a description of the chief components constituting the first real-
ization that aimed to demonstrate the algorithm feasibility. Limits analysis and in-
verse Kolmogorov flow study represent the starting point for a new approach called
one-shotand discussed in the subsequent section. The possibility offered by using
more than one memory bank concludes the chapter.

The last chapter is devolved to performance evaluation. For both first and one-
shot implementation, consume of physical resources and throughput capacity are
reported and summarized in two tables.



2 Description of a Chaotic
Cipher

Background and description of the cryptographic algorithm presented in this work
are the main subjects to which this chapter is devolved. The first section is an
introduction of cryptology science, its terminology and a brief definition and clas-
sification of cryptosystems, whereas the next one is related to chaos and chaotic
systems, particularly Kolmogorov flows. At the end of the chapter, these two topics
will be joint together to describe in detail the actual algorithm.

2.1. General Remarks About Cryptography

In this section rudimentary concepts of cryptology science are introduced. The first
subsection defines technical terms common in this discipline and used throughout
the rest of the work, while subsection 2.1.2 distinguishes different points of view
from which a cryptosystem can be seen. The objective of this section is to find a col-
location in the cryptography panorama for the algorithm implemented in hardware
for this work.

2.1.1. Basic Terminology

The wordcryptographyrefers to the science of keeping secrecy of messages ex-
changed between a sender and a receiver over an insecure channel. The objective is
achieved by encoding data so that it can only be decoded by specific individuals.

The original messageM being wanted to be sent is calledplaintextsince it is
clearly intelligible, whereas the term used to refer to the messageC being transited
over an insecure channel isciphertext. The processE of transforming a plaintext
into a ciphertext is calledencryption, while the opposite procedureD that turns a
ciphertext into a plaintext at the receiver’s side is saiddecryption. In symbols

E(M) = C

D(C) = M
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M C M
E D

ke kd

Figure 2.1: Encryption and decryption with a key.

A cryptographic algorithmis composed of the mathematical function used for
encryption and its related inverse-function for decryption. A cryptographic algo-
rithm is some times referred ascipher. The security of an algorithm can rely on the
secrecy of its function, when quality, standardization and mass utilization is not a
concern [12]. Where these restrictions can not be tolerated (basically in any prac-
tical situation), the problem is solved by means of akey, denoted withk. This key
might be any one of a large number of values, which all together form thekeyspace
K. Two different keyske andkd for encryption and decryption respectively might
be used. Once more in symbols:

Eke(M) = C

Dkd(C) = M

Finally, acryptosystemis an algorithm plus all possible plaintexts, ciphertexts
and keys.

2.1.2. Classification of Cryptosystems

As seen, definitions and symbology introduced in the previous section can be sum-
marized by the general concept of cryptosystem, whose picture is shown in fig-
ure 2.1. In regard to the kind of distribution method established for the keys, the
way a cipher treats the plaintext and the type of implementation support chosen, a
cryptosystem can be seen under several points of view. A look at them will allow
us to have an idea of the collocation of the present algorithm within the vast field of
cryptography.

Distribution of the Secret Key

The first big classification to which cryptographic algorithms might be undertaken
is the distinction between the methods with which keys are distributed. When en-
cryption keyke and decryption keykd are identical, i.e.ke ≡ kd, sender and receiver
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must agree on a secure channel through which transmitting the key without anybody
else finding out. This is the most extensively used method and is often accompanied
by the adjectivesymmetricbecause of the equivalence of the keys. Contrarily, the
asymmetricmethod makes use of a pair of keys for each individual — one public
and the other private1.

Block and Stream Cipher

Another big classification for cryptographic algorithms consists of subdividing ci-
phers into two categories: stream ciphers and block ciphers. Astream cipheris so
called because it works on a stream of data, normally one bit (but some time also
one byte or32 bit) at a time: as soon as a new value of plaintext arrives, the corre-
spondent cipher value is computed. On the other side, ablock cipheroperates on
the plaintext one block at a time: a new block of ciphertext can not be evaluated
until the previous block is finished. Moreover, a block cipher will encrypt the same
plaintext with the same key always to the same ciphertext, while for a stream cryp-
tosystem the output depends also on the history of the cipher — this leads to the
problem ofsynchronizationbetween encryption and decryption processes.

A cipher can operate in several cryptographic modes in regard to the way the
plaintext, key and ciphertext interact with each other. Electronic Codebook (ECB)
mode represents the more straightforward and simple solution for a block cipher.
Once the key is fixed, the system will always encrypt the same block of plaintext
into the same block of ciphertext, without regard to other parameters. This mode
can be thought of as a double entry look-up table. While implementations can be
extremely fast, this mode is also very memory demanding since a table is necessary
for every couple of plain- and ciphertext and for each keyk ∈ K. The counterpart
of ECB is the Cipher Block Chaining (CBC) mode in which new ciphertext blocks
depend, by means of a sort of feedback mechanism on previous outputs.

Besides ECB and CBC, Ciphertext Feedback (CFB) represents a mode to run
block ciphers as stream ciphers. This statement means that output values from a
cryptosystem are serialized as in a stream cipher, but rely somehow on the pre-
vious computed values as in a block cipher. The mechanism used to realize this
mode generally consists of a shift register into which new values are pushed and
on which the encryption algorithm depends. Another solution consists of using a
Pseudo-Random Number Generator (PRNG). It is worth noticing that in any case
the mechanism has to be initialized with aninitialization vectorwhich concurs, be-
sides the key, to effect the encipherment output for a given sequence of plaintext’s
data. This means that the ciphertext depends on previous blocks such as a stream
cipher. Nevertheless, if the initialization vector depends on the key and the keyske

1For further reference see W. Diffie and M. E. Hellman, “New Directions in Cryptography”,
IEEE Transactions on Information Theory, v. IT-22, n. 6, Nov. 1976, pp. 644-654.
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andkd match, there are no synchronization problems and ciphertext can be correctly
deciphered.

Hardware Versus Software Implementation

The kind of algorithm classes being explained in this subsection do not have well-
defined boundaries, that is, an algorithm can be moved from a class to another due
to a technological improvement or a smarter implementation. In fact, any crypto-
graphic algorithm might potentially be designed either for an hardware project and
for a software program, but many times the involved operations render one of the
two solutions (and sometimes both) impracticable or inconvenient.

A software implementation has, on its side, flexibility throughout different ap-
plications, portability from one platform to another, ease of use and ease of upgrade
of the binary or source code. The disadvantages are in speed — especially if the
algorithm belongs to the category of stream ciphers — ease of modification and
manipulation by third party.

On the other side, a hardware implementation suffers mainly of deficiency in
mathematical abilities, since operations as multiplications and divisions are nor-
mally difficult or cost prohibitive for realization. Nonetheless, the advantages abun-
dantly overcome the inadequacies. The first is speed. Dedicated hardware — pos-
sibly another chip beside the main CPU — will always win a speed race against
a general-purpose processor, especially if the cryptographic algorithm is a sort of
stream cipher.

Besides speed, security reasons play a great role. A dedicated hardware has got
a physical barrier to be surmounted before reading internal variables. Codes can
be burned into the chip and tamper-proof can prevent someone from modifying a
hardware encryption device [12]: chemical substances can be used to destruct the
chip’s logic in case a third party accesses the interior.

A final reason relies on ease installation as simple device between two existent
peripherals.

2.1.3. Confusion and Diffusion

The main objective of cryptology is to achieve the perfect secrecy [12] by which no
information of the plaintext can be extracted from the ciphertext. The only crypto-
graphic algorithm able of such a performance is calledone-time pad2 where each
character of the plain-message is ciphered with exactly one random number picked
out from a truly random sequence which can be used only once for only one mes-
sage.

2See for example D. Kahn,The Codebreakers: The Story of Secret Writing, New York, Macmil-
lan Publishing Co., 1967
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Since the one-time pad only has a theoretical validity and any other cipher is
an approximation of it, every ciphertext unavoidably yields some information about
the corresponding plaintext. In part this is also due to the redundancy to which a
natural language is subjected, i.e. the fact that a plaintext contains more symbols
than those necessary to provide the same amount of information. A good algorithm
will tend to reduce redundancy to a minimum.

According to [12] who cites Shannon3 the two basic techniques for conceiving
redundancies, beside using a compression algorithm, are called confusion and diffu-
sion. Confusionseeks to reduce the correlation between the input plaintext and the
output ciphertext. The task is generally accomplished substituting every fundamen-
tal block of data for another one according to the rules dictated by the cryptographic
algorithm. Despite this, repetitions or well-known sequence of blocks in the plain-
text are still kept at the output. This problem is addressed bydiffusion: a data on the
input block is transposed to other coordinates on the output block. Put in another
way, diffusion changes the position of data, while, during a confusion process, the
data itself is modified. It is to be observed that diffusion implies a block cipher,
whereas confusion can deal with streams of data, as well.

2.2. Chaos and Kolmogorov Flows

This section is opened by a simple introduction to chaos theory which is followed
by a brief definition of two characteristics that distinguish some chaotic systems:
ergodicy and mixing-property. A discussion about Kolmogorov flows related to the
application for this work closes the section.

2.2.1. Basic Introduction to Chaos

Uncountable definitions have been given in seeking to formally describe chaos and
chaos theory as a branch of mathematics. In this ambit, only a qualitative descrip-
tion suitable for comprehension of the algorithm highlighted in section 2.3 is faced.

Let’s start this introduction to chaos speaking about the mathematical problem
of having two bodies in space. Solving the system of differential equations that
arise from the application of Newton’s law, the trajectories of the two bodies are
completely described in terms of space and time by the well-known gravity law.
This means that, given the initial conditions, all the parameters that govern the
system — i.e. position, velocity and acceleration — can be determined for each of
the two bodies at any time. Because of this, the system is said to bedeterministic.

When a third body is introduced into the system, the property of the system of
having a closed solution no longer holds to be true. The system of differential equa-

3C. E. Shannon, “Communication Theory of Secrecy Systems”,Bell System Technical Journal,
v. 28, n. 4, 1949, pp. 656-715
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Figure 2.2: Divergence due to sensitive dependence to initial conditions.

tions still describe completely the behaviour of the three bodies, but the knowledge
of the position of each element in the system at a given timet can be calculated
only by iterating the differential equations written in discrete form starting from the
initial condition up to timet. In other words, the output from the previous step is
the input of the next iteration and a general solution can not be expressed using only
one equation. The system belongs to the category ofnon-linear systems.

A third characteristic distinguishes the system of three bodies in space: density.
A system isdensewhen, without regard to the distance between two legal points in
the system, there always exists a third point between them.

These properties lead, for a reason that will not be discussed here, to another
proposition by which chaotic systems are referred —sensitive dependence on initial
conditions. To provide a general idea of such dependence without entering into the
mathematical realm, let’s suppose to record the trajectory followed by the system
starting with the initial conditiont0. Let’s also suppose to choose another condition
t1 very close, thank the denseness property, tot0. If the trajectory oft1 diverges
sensitively from the one oft0 (see figure 2.2), it is impossible, chosen a third initial
conditiont2, to predict what trajectory the system will follow. In this sense, the
system appears to behaverandomly.

Summarizing the notions so far introduced, achaotic systemmight be defined
as a non-linear deterministic system so sensitive to initial conditions that it appears
random. It is remarkable observing that here two antonyms as deterministic and
random are used in the same sentence, since chaos theory effectively forms a bridge
between two dissimilar sciences — mathematics and probability.

2.2.2. Kolmogorov Chaotic Systems

In the prior subsection a general view of what a chaotic system represents has been
outlined. Here the discussion is going ahead showing that the Kolmogorov flows
belong to a hierarchy of chaotic systems with specific characteristics.
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(a) (b) (c)

Figure 2.3: The remarkable differences in behaviour in “phase space” between a
simple system (a), a so-called ergodic system (b) and a mixed ergodic system (c)
which is chaotic.

Ergodic- and Mixing-Properties

It is possible to imagine a chaotic system as a point tracing a trajectory in space.
The rules governing the system often keep the point within a regionE that is called
the phase spaceof the system. In general, the function that describes the system
maps values taken fromE in itself, but not necessarily all values from the phase
space are mapped so that allE is covered. If the set of chaotic system is restricted
to systems whose output coincides with the whole phase spaceE, we are working
with a subset that takes the name ofergodic systems.

At a higher level of the hierarchy, there exists another class of chaotic systems
which possesses a new property calledmixing property. This name refers to the par-
ticular characteristic that some ergodic systems show to have. Exploiting a simple
comparison to clear the idea, it can be said that a system is mixing when it spreads
out into ever finer fibres until it covers the entire phase space such as a drop of ink
spreads out chaotically in water (see figure 2.3(c)). This behaviour is due to the fact
that trajectories diverge from each other exponentially fast.

K-Flows

Continuing to go up the hierarchy of the randomness, a smaller subset of systems
showing mixing and ergodic properties can be identified. This new sort of systems
are calledK-flows. The “K” stands for Kolmogorov4, a Russian mathematician
whose work influenced several branches of modern mathematics, while the noun
“flow” comes out from the fact that this kind of systems are widely spread among
researches where collisions between particles dominate the dynamics. K-flows dis-
tinguish from other chaotic systems since they possess the remarkable property that

4Born April 25, 1903, in Tambov, Russia and died October 20, 1987, in Moscow.
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Figure 2.4: Some sample points mapped byTπ.

their next measurement can not be predicted even after an infinite number of prior
measurements.

For this work the Kolmogorov flows described in [10] and [11] will be used.
The continuous versionTπ of this system can be expressed using the following
mathematical notation. Letπ = (p1, p2, . . . , pk) be a sequence of numbers with the
properties thatpi ∈ R, 0 < pi < 1 and

∑
i pi = 1, wherei = 1, . . . , k. Let also

the unit-squareE = [0, 1) × [0, 1) denote the phase space of the system andFs be
defined as follow

Fs =

{
0 for s = 1
p1 + . . .+ ps−1 for s = 2, . . . , k

(2.1)

Then the applicationTπ : E→ E on (x, y) ∈ [Fs, Fs + ps)× [0, 1) is expressed by
the following relation

Tπ(x, y) =

(
1

ps
(x− Fs) , yps + Fs

)
(2.2)

andTπ(x, y) ∈ [0, 1)× [Fs, Fs + ps).
In other words, the phase spaceE is divided intohorizontalstrips of dimensions

1 × ps and bounded on the left and on the right byFs andFs + ps, respectively.
Every point(x, y) of each strip is mapped according toTπ into a vertical strip of
sizeps × 1 (see figure 2.4).

In order to deal with a digital circuit, the applicationTπ just defined has to
be modified in a way that works with discrete values. This task can be accom-
plished thinking about the phase space as a subset of natural numbers, i.e.En =
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[0, n) × [0, n) ⊆ N2, wheren is the dimension of the square phase space. Ifδ =
(n1, n2, . . . , nk) is a list of positive integers that holds the properties0 < ni < n
and

∑
i ni = n, wherei = 1, . . . , k, then thediscrete versionof the K-flow defined

by eq. (2.2) will be identified byTn,δ.
To be suitable for our purposes, the applicationTn,δ : En → En just introduced

has to possess another property. In order to avoid a generic division operation in-
duced by the term1/ps, ni must dividen without any reminder. Thus, a new se-
quence of positive integers can be defined asqs = n/ns, wheres = 1, 2, . . . , k. If
Ns is still the left border of thes-th vertical strip

Ns =

{
0 for s = 1
n1 + . . .+ ns−1 for s = 2, . . . , k

(2.3)

then the application on(x, y) ∈ [Ns, Ns + ns) × [0, 1) that approximates the best
the corresponding chaotic continuous system is given, according to [10], by the
following relation

Tn,δ(x, y) =
(
qs(x−Ns) + (y modqs) , (y div qs) +Ns

)
(2.4)

andTn,δ(x, y) ∈ [0, 1)× [Ns, Ns + ns).
As we are concerned of security purpose, the dimension of the square phase

space must be as big as possible. In fact, increasingn results in a greater number of
different valid parametersδ from which it is possible to choose.

The operations division and modulus of eq. (2.4) are between integer numbers.
Their definition is as follow

a = b · d+ r ⇒
{

a div b = d
a modb = r

(2.5)

wherea, b, d andr are natural numbers,r < b andb 6= 0.
Finally, it can be observed that the K-flowTn,δ is bijective. Defining the upper

border of thes-th horizontal strip

Ms =

{
0 for s = 1
n1 + . . .+ ns−1 for s = 2, . . . , k

(2.6)

points(x′, y′) ∈ [0, 1)×[Ms,Ms+ns) can be mapped back to[Ms,Ms+ns)×[0, 1)
by the inverseT−1

n,δ given by

T−1
n,δ (x′, y′) =

(
(x′ div qs) +Ms , qs(y

′ −Ms) + (x′ modqs)
)

(2.7)
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2.2.3. Pseudo-Random Sequences

The ciphering algorithm that is going to be described in section 2.3 uses random
numbers in two parts of the process. Therefore, it is worth spending some words on
what pseudo-random-sequence generation is without going too much into details.

A real random sequence is a sequence of numbers which shows a property of
real randomness (i.e. without any correlation among the generated numbers) and
which cannot be reliably reproduced [12]. The nature offers a vast variety of real
random sequences. Unfortunately, these sequences cannot be exploited since com-
puters and digital systems in general are deterministic. In fact, any finite state ma-
chine can only be in a finite number of states. This implies that no random number
generator can produce a real random sequence, but only pseudo-random sequences.
A pseudo-random sequenceis a sequence where random numbers repeat after a
certain number of generations, calledperiod. The finite state machine has its initial
state set by a key, frequently referred to as aseed. Such finite state machines are
named Pseudo-Random Number Generator (PRNG).

In order to be suitable for cryptographic applications, a PRNG should possesses
two properties. The first property is related to randomness. The PRNG should have
a period long enough to pass all the statistical tests of randomness available. The
second property relies on unpredictability. It should be computationally infeasible
to calculate the next pseudo-random number given the entire previous produced
sequence.

2.3. Algorithm Behavioural Description

This section describes, with the auxil of the concepts introduced in the prior sec-
tions, the cryptographic algorithm related to this work.

The general block diagram of the cipher under consideration is shown in fig-
ure 2.5 on the following page. The passphrase of6, 400 bit is unique for both en-
cryption and decryption, so that, according to what exposed in section 2, the algo-
rithm is symmetric. More interestingly, the algorithm works on square plaintexts
(formally images) and therefore it belongs to the category of block ciphers. The
only constraint to which images are subjected is that the block length has to be an
integral power of 2. The cipher performs an encryption iterating the same algorithm
for r rounds. According to the author [11], a number of rounds at least equal to 12
is recommended.

Permutation

The permutation component is responsible for the actualization of the conceptdif-
fusionoutlined in section 2.1.3. Each data which composes the plainblock at the
input is transposed to a new position at the output. This transformation follows the
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Figure 2.5: General block diagram of the cipher algorithm.

rules dictated by the chaotic Kolmogorov flowTn,δ formalized by eq. (2.4) on page
11.

It is opportune to remember that the K-flowTn,δ just mentioned depends on
two parameters. The first parameter isn which represents in this context the size
of the image. The second parameter is the sequenceδ = {n1, n2, . . . , nk} into
which the image is partitioned. Becausen is a power of 2 and because eachns
(s = 1, . . . , k) must dividen without any reminder, the two major operations of
division and modulo that compose the applicationTn,δ are between a natural number
in the range[0 . . . n) and a number that is a power of two, i.e.qs. Common partitions
are on the form{1/2, 1/2}, {1/4, 1/2, 1/4} and so on, which, for the discrete case,
translate to{2, 2}, {4, 2, 4}.

Substitution

Confusion is accomplished by the substitution component. Each data p(i) coming
from the permutation block at timei is combined with the previous values to com-
pute a new cipherdata c(i) that will constitute the output encrypted blockCi. Since
no re-arrangement of the position each data takes within blocks are performed, but
only a change in the value of data, substitution component clearly belongs to the
category of stream ciphers defined in section 2.1.2.

The mathematical operation that copes with the confusion is formalized by the
following equation

c(i) = (p(i) + prsp(i) + prsc(i)) mod232 (2.8)

The quantities prsp(i) and prsp(i) represent the pseudo-random sequences for plain-
text and ciphertext, respectively. Their values are computed by means of the follow-
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ing relations

prsp(i) = (p(i− 24)− p(i− 37)− cp(i)) mod232 (2.9)

cp(i+ 1) =

{
1 if p(i− 24)− p(i− 37)− cp(i) < 0
0 otherwise

(2.10)

prsc(i) = (c(i− 24)− c(i− 37)− cc(i)) mod232 (2.11)

cc(i+ 1) =

{
1 if c(i− 24)− c(i− 37)− cc(i) < 0
0 otherwise

(2.12)

These expressions reassemble a type of PRNG (see section 2.2.3) described in [8].
Specifically, the author of the present algorithm chose the recommended Subtract
With Borrow (SWB) pseudo-random number generator whose characteristic equa-
tion is given byxn = xn−24 − xn−37 − c mod232.The integer numbers 24 and 37
clarify the constant present in eq.s (2.9) to (2.12).

It is important to notice that the considered SWB generator uses a seed vector
x = (x1, . . . , x37, c) constituted of 37 elements of32 bit each and one element of
1 bit. This vector seed has to be initialized with a not-null vector in order for the
pseudo-random generator to work properly.

Key Management

The passphrase in figure 2.5 on the page before represents the input key with which
the sensitive data are protected. As indicated by the author of the algorithm, the
passphrase is limited to at most200 · 32 = 6, 400 bit that directly feed a 250 32-
bit element vector. Therefore, the remaining 50 cells are initialized with random
values.

The above-mentioned vector belongs to a PRNG called “R250” [6]. This com-
ponent is responsible of delivering on demand pseudo-random numbers to the prior
two components. Precisely, since the author of the algorithm did not exactly spec-
ify the procedure, it has been decided that the first number serves to chose the
δ-partition for the permutation and the next2 · 37 numbers fill up the substitution’s
vectors.



3 Tools and Methods

As the first aim of this work is testing the feasibility and performance of a new
algorithm, great flexibility and versatility are required in the design description. The
tools and methodology being used are able to aid designers to deal with architectural
complexity and are capable of easy system parameterization and result comparison.
Moreover, they should limit the time and resources needed for circuit verification.

There are two main basic hardware design methodology currently available:
schematic and language based designs. For the purpose of this work the latter
was chosen. In fact, the schematic based design, despite of better optimization
implementation in terms of both area and speed, does not fulfill the requirements of
simplicity and speed of designing stated above. Nevertheless, the language based
counterpart suffers from the synthesis tool used as well as the code style with which
designs being synthesized are written, as is the case for software developing compil-
ers. These two factors can potentially lead to variances when comparing synthesis
tool outputs.

Before going into details, it is worth noticing that the language based design
choice relies primarily on two components: the hardware side, represented by the
promising FPGA technology, and the programming language counterpart, repre-
sented for the current project by VHDL. The former is discussed in the first section,
where the more relevant features, from this project point of view, will be illustrated;
the latter is introduced in the next section that looks at basic and fundamental con-
cepts in VHDL. Finally, the methodology which has being followed to design the
present algorithm will be elucidated.

3.1. FPGA

The Field-Programmable Gate Array (FPGA) is a type of programmable device.
Programmable devices are a class of general-purpose chips that can be configured
for a wide variety of applications, having capability of implementing the logic of
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hundreds or thousands of discrete devices. PROM, EPROM and EEPROM are the
oldest members of that class, while PLD and PLA represent more recent attempts to
provide the end-user with an on-site customization using programming hardware.
This technology, however, is limited by the power consumption and time delay
typical of these devices.

In order to address these problems and achieve a greater gate density, MPGAs
showed up in the industry market. An MPGA consists of a base of pre-designed
transistors with customized wiring for each design. The wiring is built during the
manufacturing process, so each design requires expensive custom masks and long
turnaround time.

3.1.1. Why FPGAs

FPGAs offer the benefits of both PLD and MPGA. In fact, the computing core of
an FPGA consists, in general, of a highly complex re-programmable matrix of logic
IC, registers, RAM and routing resources. These can be used for performing log-
ical and arithmetical operations, for variable storage and to transfer data between
different parts of the system. Furthermore, because no CPU governs the entire chip
and no sequential instructions have to be processed, typically thousands of opera-
tions can be performed in parallel on an FPGA during every clock cycle. Though
the clock speed of FPGAs (20÷ 130 MHz) is lower than of current RISC systems
(100÷ 500 MHz) the resulting performances can be extremely satisfactory in many
applications like image processing, artificial neural networks and data encryption,
as reported in [3].

An implementation on a FPGA is even more attractive when considering a cryp-
tosystem. While a software solution include ease of use, ease of upgrade, portabil-
ity, and flexibility, a cryptographic algorithm and its associated keys that are imple-
mented in hardware are, by nature, more physically secure as they cannot easily be
read or modified by an outside eavesdropper.

3.1.2. The SRAM Based FPGA

The SRAM FPGA gets its name from the fact that programmable connections are
made using pass-transistors, transmission gates, or multiplexers that are controlled
by Static RAM (SRAM) cells. The advantage of this technology resides in the fact
that it allows fast in-circuit reconfiguration. The major disadvantage, however, is
the size of the chip required by the RAM technology.

The FPGA has three major configurable elements: Configurable Logic Blocks
(CLBs), Input/Output Blocks (IOBs), and interconnects. The CLBs provide the
functional elements for constructing user’s logic (see figure 3.1); it normally com-
prises of a Look Up Table (LUT) with 4 inputs and a flip-flop output. The IOBs
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Figure 3.1: 2-slice Virtex-E CLB (Courtesy of Xilinx Inc.)

provide the interface between the package pins and internal signal lines. The pro-
grammable interconnect resources provide routing paths to connect the inputs and
outputs of the CLBs and IOBs onto the appropriate networks. Customized config-
uration is established by programming internal static memory cells that determine
the logic functions and internal connections implemented in the FPGA.

The XCV400E, belonging to the Virtex-E family from Xilinx, is the FPGA cho-
sen for this implementation. Its features, summarized in table 3.1, are generous in
gates and I/O pins allowing the designer long synthesis waits and troublesome pin
assignments.

Besides the common structure depicted above, this FPGA family provides dig-

XCV400E
System Gates 569,952

Logic Gates 129,600

CLB Arrays 40× 60

Logic Cells 10,800

Differential I/O pairs 183

User I/Os 404

BlockRAM Bits 163,840

Distributed RAM Bits 153,600

Table 3.1: Virtex-E FPGA XCV400E features from [16]
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Figure 3.2: Symbol for the Block SelectRAM+ memory block (Courtesy of Xilinx
Inc.)

ital Delay-Locked Loops (DLLs), dedicated electronics to deal with clock distri-
bution problems, and tristate buffers (BUFTs), for driving on-chip busses. But the
major feature, extensively used especially in the last part of this project, is the Virtex
Block SelectRAM+ technology [15].

A Block SelectRAM+ is a real synchronous four CLBs high memory block
which extends the full height of the chip, immediately adjacent to a CLB column
location. In the chip selected there are 40 blocks for a total of 163,840 Block Selec-
tRAM bits. Each cell, illustrated in figure 3.2, can be seen as a fully synchronous
dual-ported4096 bit RAM with independent control signals for each port. This
structure is suitable only for shallow memory arrays, but it can simplify enormously
the project. Adopting this solution, in fact, the designer is free of protocol trouble
between the chip and an external memory bank, while every read/write request can
be fulfilled in 2 clock cycles.

3.2. VHDL

VHSIC Hardware Description Language (VHDL) is a language for describing dig-
ital electronic systems. Its nested acronym is due to the fact that it arose out of the
United State government’s Very High-Speed Integrated Circuit (VHSIC) program
and to the need for a standard and well-defined language to describe digital Inte-
grated Circuits (ICs). It was subsequently embraced by the Institute of Electrical
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and Electronics Engineers (IEEE), which adopted it in the form of the IEEE Stan-
dard 1076Standard VHDL Language Reference Manualin 1987 and revised it in
1992. This is the latest official version and is often referred to as VHDL-93.

The main difference between VHDL and another programming language more
widely used in computer science as, for example, ‘C’, is that VHDL enables the
execution of concurrent statements. In contrast with a sequential statement, acon-
current statementis so called because conceptually it can be activated to perform
its task together with any other concurrent statements. Concurrency is useful for
modeling the way real circuits behave (you can think of any logic port such an SR
flip-flop), but can potentially lead a neophyte to misunderstandings and unpredicted
results.

The real power of VHDL, anyhow, resides in the possibility to look at the same
system with different levels of abstraction, where different pieces of information
play different roles in describing that system’s model. If we start with a require-
ments document for our system, we can decompose it in several components that
jointly fulfill the requirements proposed. Each of these components can be in turn
decomposed into subcomponents, for which design we need to pay attention to a
smaller amount of relevant information than being overwhelmed by masses of de-
tail. Moreover, the design we are focusing on can be described using abstract data
types or going closer to the electronic rules. The result of this process is a hierar-
chically composed system, built from primitive elements.

VHDL attains this goal with a rigorous formalism that comprises three funda-
mental concepts: entity, architecture and configuration.

3.2.1. Entities

In VHDL an entity is the equivalent of an IC package in electronics. A package
is defined by its name and the number and nature of ports it uses to exchange data
and interact with external circuits. It is not relevant to the function that the compo-
nent performs, the resources it uses or the complexity by which it is characterized.
What matters is, using the language’s terminology, the number ofports, by which
information is fed into and out the circuit, thetype, which specifies the kind of
information that can be communicated, and themodewhich specifies whether the
information flows into or out through the entity’s ports.

At this point it is important to have clear in mind the function and number of
signals for the entity being defined. Otherwise, when all the components are assem-
bled together to form the whole system, the code can be subjected to several and
problematic changes. Stated in a different way, the system has to be carefully split
in subcomponents for which the major number of details has to be planned to avoid
subsequently cumbersome fixes.

The entity concept easily allows the programmer to apply the Latin motto,
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widely used in engineering science,divide et impera1, not only because a com-
plex system can be split in smaller and more tractable sub-systems, but since it also
permits to face structural problems explained above during a well-distinct phase and
postpone descriptive problems to a latter stage by using architectures.

It is worth observing that the last VHDL standard approved by IEEE and ab-
breviated to VHDL-93 permits a simpler and quicker method of component instan-
tiation, formally known asdirect instantiation[13, pag. 154], for which neither
component declaration nor configuration are needed.

3.2.2. Architectures

An architecture, continuing with the analogy of an IC, is equivalent to the inter-
nal electronic circuit that performs the function for which the component has been
designed.

At this stage all the signals the entity uses to communicate with the external
world are defined and unchangeable. Inside the entity, instead, the programmer can
write any type of statements allowed by the VHDL syntax, like other components,
representing sub-circuits, other signals, to connect them, or processes, which con-
tain sequential statements operating on values. The purpose is only that to apply
some operations to data on input ports and generate some results to assign to output
ports.

Within an architecture the programmer can concentrate on the descriptive part of
the system, but the Latindivide et imperamotto can be applied once again. VHDL,
indeed, offers the opportunity to choose the desired abstraction level. Thus, for a
first behavioural version, aiming to investigate a circuit feasibility or correctness,
code lines containing high level data types or cumbersome mathematical formulas
and few electronic details will be advisable. Then, a subsequent description can
go further and optimize the implementation with clever solutions for better perfor-
mance, smaller area and fulfillment of constraints.

3.2.3. Configurations

In the previous two subsections we saw that the same entity can be usefully de-
scribed, unless the functional behaviours match, with different approaches that cor-
respond to different architectures. Due to this correspondence, nothing prevents us
from choosing an architecture of an entity regardless of architectures chosen for
other entities. Theconfigurationdeclaration permits of assembling the system up
to our goal, architectures availability or simply taste.

To make the idea clearer, let suppose we haven entities{E1, . . . , En}. Let also
suppose each of them has got two architectures,Ai1 andAi2, with i ∈ {1, . . . , n}. If

1In English it can be translated to “divide and rule” or “divide and conquer”.
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the entire system is only composed of all the entities{E1, . . . , En}, combining the
two architectures for each of them we can virtually have2n different representation
of the same system.

In practice the situation can be slightly different. Indeed, we can have a be-
havioural and abstract architecture that does not use the clock signal, common to
almost all the digital systems. Such an asynchronous architecture cannot be sided
by a synchronous version of another component, because they do not share a piece
of information carried by the clock signal. Nevertheless, the configuration facility
is highly attractive since a system that comprises of only behavioural architectures
can act as reference model for correctness in successive implementations.

3.2.4. Generic Parameters

Thegeneric interface listis another powerful tool provided by VHDL language. Its
aim is to allow parametrized descriptions of entities. In fact, from an architecture
point of view, a generic element is seen as a constant whose visibility extends into
the whole architecture body corresponding to that entity declaration. The actual
generic value, on the other hand, is defined in the entity that lies on a upper level in
the hierarchy and is passed down to the component as a parameter.

To demonstrate the concept, we can consider a situation where we need a 2-
input multiplexer for which we design an architecture. If subsequently we need a
multiplexer with 4 inputs and do not use the generic facility, we have to write a new
entity with two more pins and a new architecture. Instead, with a generic element
in the entity definition and an opportune descriptive code, we can change only one
parameter during the component instantiation and still use the same multiplexer
implementation.

This approach has several advantages. The entity can result in a more dynamic
and versatile component. The reduced number of lines permits handling with less
architectures. It also simplifies code maintenance since, if a logical error is found,
only one implementation needs being modified. At last but not least, a parametric
description normally has a more regular structure that may be better synthesized by
the synthesis tool.

The drawback is the increased complexity in the architecture design which re-
quires better summarizing skills and wider perspectives. In fact, a parametric entity
leads the programmer to face problems due to out-of-range values or exceptions not
contemplated in the original version. In the end, especially after some practice, the
advantages will certainly prevail.
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3.3. Software Tools

The following section briefly describes the software tools used to write, compile,
test and synthesize the project presented in chapter 2.

To develop and debug over 7,100 (lines nearly 13,000 with comments and blank
lines included) of the project code several, commercial programs played an im-
portant role. Unfortunately the Graphical User Interface (GUI) provided has been
found to be computationally heavy on the equipped workstations. Thus, to make the
procedures semi-automatic, some scripts in Tcl and Makefile languages have been
provided, having the programmer familiarize also with these marginal but anyway
important tools.

3.3.1. Editing

To write and debug the different types of source code, XEmacs, version 21.1, was
chosen primarily for its versatility. This powerful and extensible text editor with full
GUI support includes nice features likeword completition, for commands and refer-
ences,syntax fontification, for keywords and comments highlighting with different
colors, andkey bindings, for quick access to the most used functions.

It is worth mentioning, for the great work done by authors, theVHDL Mode
(version 3.30). This Major mode, besides the intrinsic features of Emacs, provides
template insertions, that take advantage VHDL’s strict syntax to speed up typing of
common language structures such as entities definitions and instantiations, program
control statements, signal and variables definitions. It also permitsauto-indentation
andkeywords alignmentspecified in [5], for a well-structured VHDL models, so
they can be efficiently used and maintained also by a third person. The last word
goes toport translation, for cutting and pasting of entity and component declara-
tions to components instantiations and test bench file generations.

3.3.2. Compilation and Simulation

The workstations used were equipped with the suite QuickHDL release C.2 by Men-
tor Graphics Corporation. The commandqvhcom , version 8.5_4.6i, was issued
over every source file along with the switch ‘-93 ’ for VHDL-93 compatibility. The
tool qhmake was used to produce a source listing suitable formake and avoid
recompilation of unmodified code files.

As simulatorqhsim , belonging to the same suite and with same version num-
ber as the compiler, was the command typed. Because of the intensive application
of the genericfeature of the VHDL language introduced in section 3.2.4, generic
values were passed to the simulator through theMakefile written for the purpose.
The GUI’s wave form viewer, break-points and step-by-step facility helped the pro-
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grammer to debug the code, permitting a deep insight into the VHDL source line
execution.

3.3.3. Synthesis

LeonardoSpectrum Level 3 version 1999.1i by Exemplar Logic was the synthesis
tool available. Since its GUI was immediately revealed to be computationally very
heavy, switching tospectrum line command was one of the first step taken. In-
deed, LeonardoSpectrum Level 3 is a versatile optimization and analysis tool with
advance Tcl scripting capabilities. This programming language allowed great flexi-
bility and trimmering on a per component basis of the synthesis process, even if the
major part of configuration parameters left to be discovered.

3.3.4. Place-and-Route and Back-Annotation

Place and route process is normally a very time consuming task since it involves
several software strategies and resolution steps as well as files and commands. For
example, three commands were necessary with the equipped suite to accomplish
the overall process:ngdbuild , to translate and merge the various source files of
a design into a single Native Generic Database (NGD) design database,map, to
map that database into the CLBs and IOBs of the physical device and write out
this physical design to a Native Circuit Database (NCD) file, andpar , to actually
place and route a design’s logic components (mapped physical logic cells) contained
within an NCD file based on the layout and timing requirements specified within the
Physical Constraints File (PCF).

To simulate the synthesized system version, two more commands were neces-
sary. ngd2vhdl translates an NGD netlist to a VHDL netlist, where the former
is produced byngdanno . This command takes a mapped, placed, or routed NCD
file and creates an NGD type file. It uses the Native Generic Mapping (NGM) file
produced in the process to re-insert all of the optimized logic and netnames into
the NGD file so that the original functional test bench can be used for simulation.
Moreover, a Standard Delay Format (SDF) file is produced to allow simulations that
take into account register-to-register delay time. The whole process takes the name
of back-annotation.

3.3.5. Other Tools

Many other minor tools, but anyway not less important, were used during design-
ing this project. Themake command permitted a semi-automatic procedure for
compiling, testing and synthesis. Revision Control System (RCS) allowed storing
and retrivial of revision making the programmer to feel safe with the last working
implementation.diff was used to compare the output files with the file obtained
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with the behavioural version. Finallyod andgawk afforded the conversion of the
test image from and to a plain file of exadecimal data.

3.4. Adopted Methodology

This project represents for the author the first work involving a programming lan-
guage for digital circuits like VHDL. Nevertheless, an operating method was fol-
lowed to ensure reliable results and faster developing. Not all the steps described
below were necessary or possible to accomplish at every level of the system hierar-
chy.

Though the VHDL source files have been tested running the commands briefly
introduced in section 3.3, the code was written without using any tool dependent
instruction and should be compiled and simulated under any other suite.

System Comprehension

The first step assumes a deep knowledge of functions and overall mechanism of
the system or sub-system being analyses. Identified blocks and external signals are
named.

Component Enucleation

At this level the concept ofentityand thedivide et imperaapproach, both introduced
in section 3.2.1, are applied. The system is divided in sub-components that represent
functions or macro-cells established at the previous step. As well as the general
definition of the sub-blocks, the interdependencies among them should be clear,
that is, nomenclature, number and type of signals through which sub-components
exchange data.

Behavioural Description

For each sub-component enucleated a behavioural description of its function is pro-
duced. This step, which is translated in practice by thearchitecturestatement ex-
plained in section 3.2.2, focuses its attention on algorithm flow, arithmetic formulas
and, more in general, data elaboration. The purpose, indeed, is to verify hardware
feasibility and functionality. Technically speaking, the behaviour of a model is de-
scribed by signal assignment statements within processes: in response to changes
of input signals, the corresponding process is activated, the new value read and a
new value for output signals calculated.



Tools and Methods 25

Test Bench

The behavioural architecture just introduced can be tested using atest bench file.
A test bench is an entity that provides stimuli for the system under test and reads
its output, which can be written to a file. The output produced by a behavioural
description can be considered as reference data for subsequent descriptions, since
that architecture pays attention to the logical aspect of the system by definition and,
thus, can be potentially free of errors.

Synchronous Description

At the previous step every sub-component is of the type asynchronous, that is, pro-
cesses are executed as soon as the value of an input signal changes. Although an
FPGA can be programmed to work asynchronously, digital systems are character-
ized by a commonclocksignal. In order to obtain better synthesis results in terms
of area and speed, a fixed scheme (reported in the listing below) is strongly advised.

Listing 3.1: Standard scheme for synchronous descriptions

1 if rst = ’0’ then −− asynchronous reset (active low)
2

3 state := first_s ;
4 ...
5

6 elsif clk ’event and clk = ’1’ then −− rising clock edge
7 case state is
8

9 when first_s =>
10 −− first case statements
11 ...
12 state := second_s;
13

14 when second_s =>
15 −− second case statements
16 ...
17 state := third_s ;
18

19 ...
20

21 when last_s =>
22 −− last case statements
23 ...
24 state := first_s ;
25

26 end case ;
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27 end if ;

This scheme, made essentially ofif andcasestatements, resembles a finite state
machine where the next state depends on input data and present state. Thanks to the
clock signal, I/O port values can change during a clock period and their stability at
rising clock edges is taken for granted.

Finally, a synchronous description focuses on the realization aspect of the project
following the footprints of the behavioural description. Its correctness can be proven
comparing its output to the results obtained from the previous step using the tools
illustrated in section 3.3.5. In literature this synchronous description is frequently
referred asRegister Transfer Language (RTL) description.

Synchronous Description Optimization

This step, running the previous listing through the synthesis tool briefly described
at the end of section 3.3.3, aims to optimize the source program for the synthesis
process. Indeed, although the trick explained above, modules might not be synthe-
sized.

VHDL does not know anything about the FPGA being targeted, thus it does
not make any assumption of features of the chip being programmed and allows lots
of operations on its basic data types. Nevertheless, the hardware is not likely to
implement any operation such as multiplication, division or modulo. If the code for
synchronous description uses such or even more complex functions, it cannot be
synthesized and other strategies are required.

Synthesis and Timing Version

If the previous stage is successful, the synchronous architecture of the entire system
can be processed through the commands of the place-and-route suite mentioned in
section 3.3.4. The result is one long file, containing all the primitive blocks belong-
ing to the technology adopted, described in VHDL and interconnected to perform
the same function of the original system. Along with this file, another listing in
SDF format is produced. This complex of data automatically generated can sim-
ulate a system behaviour closer to reality, allowing area and timing measurements
and critical path identification.

Multiple Configurations

As explained in section 3.2.3, component architectures of a system can be inter-
twined to investigate system performances. At this stage all the sub-components
have been tested and new configurations for a variety of solutions can be written,
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tested and synthesized. Because the test bench interface does not change, the same
test source file can be used.



4 Architectural
Implementation Analysis

This chapter presents the actual design depicted in chapter 2 using the methodology
and tools introduced in chapter 3. The description starts with the first attempt of de-
sign, where the algorithm feasibility was the primary purpose. In four subsections,
the main components permutation, substitution, Pseudo-Random Number Genera-
tor (PRNG) and memory is analyzed showing briefly their function and presenting
the major problems faced. The second section introduces limitations of the first
implementation and presents a new solution, calledone-shot. New subcomponents
designed to deploy this approach are outlined in the next section. The chapter will
be concluded with a description of the major bottleneck of this algorithm, along
with the delineation of some possible solutions and a brief comparison to other
related works.

4.1. Algorithm Feasibility

Following the method illustrated in section 3.4, the algorithm, whose the block
diagram is shown in figure 2.5 on page 13, was spontaneously divided in three
chief components: permutation, substitution and PRNG, for each a behavioural
description and a test bench was written.

To prove the correctness of the permutation block, the same image reported
in [11] fed the circuit input and the resulting output was compared with the en-
crypted image in the same technical report. The obtained data was used as sample
for the following synchronous and timing architectures. Comparison was attained
using programdiff outlined in subsection 3.3.5.

For substitution components, instead, no data file with which to compare the
behavioural architecture output was available. Nevertheless, a small change in the
substitution code allowed to perform an anti-substitution and the algorithm’s cor-
rectness was shown by the matching of these data to the original ones. Subsequently,
the same comparison method adopted for the permutation block was used.
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For the PRNG the situation was slight different. A simple research on the In-
ternet revealed the existence of the Scientific Library written in ‘C’ by GNU Free
Software Foundation. In this library a source file, implementing the same pseudo-
random number generator used in this project, reports the theoretical value of the
PRNG after 10,000 iterations. Once that number was generated, PRNG’s code has
been considered free of logical bugs.

Proven that the three components performed the operations for which they had
been designed, the system for one-round encryption was assembled and the be-
havioural architecture output used, once again, as data sample for the subsequent
descriptions. It is worth highlighting that at this stage the encryption procedure
works on a step-by-step basis, that is, a substitution is not started until a permuta-
tion has been finished. Therefore at most three memory areas for image data storage
are necessary: an input area for images being encrypted, a temporary area for per-
mutated images and an output area for encrypted data. These memory banks can
be reduced to two if the output image overwrites the input area. Extra memory is
necessary for the substitution process and the PRNG component in order to work.

At least but not last, all the I/O memory operations are performed using a com-
mon interface summarized at the end of the present section.

4.1.1. Permutation

The permutation procedure illustrated in section 2.3 consists, in the final analy-
sis, of just a change in coordinates of the input values. If either the input and the
output data were stored using flip-flops, a zero-delay time permutation would be
possible, since the synthesis would result to as an intricate as banal route network.
This method reassembles the ECB of section 2.1.2. Unfortunately, considering the
amount of data the algorithm has to deal with and the target chip, this approach is
not achievable and a read/write solution must be provided.

The procedure’s core, whose listing is reported below, is constituted of three
loop cycles that scan the whole image. The outer loop is used for the current par-
tition part (), chosen according withkey, which is fetched at the start signal, and
upper and lower bounded bycNs andnNs−1, respectively. The second loop is for
the x coordinate of input image, while the last and most internal loop is for they
coordinate, ranged between 0 andn−1.

Listing 4.1: First behavioural description of the permutation procedure

1 −− variables initialization
2 read_mem(key_loc, key);
3 part := choose_part(key);
4 nNs := 0;
5

6 partition : for Ns_index in part’low to part ’high loop
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7 next partition when part(Ns_index) = 0;
8 cNs := nNs;
9 nNs := nNs + n/part(Ns_index);

10 qs := part(Ns_index);
11

12 x_axes : for x in cNs to nNs−1 loop
13

14 y_axes : for y in 0 to n−1 loop
15

16 read_mem(img_in + y∗n + x, datum);
17 permutation(qs, cNs, x , y , x1, y1);
18 write_mem(img_out + y1∗n + x1, datum);
19

20 end loop ; −− y_axes
21 end loop ; −− x_axes
22 end loop ; −− partition

The actual calculation for a data permutation is reported on the following page.
Becauseqs in practice is always a power of 2, operationsdivisionandmodulocan
be undertaken to the synthesis tool providing only acasestatement that restrictsqs
declared asnatural to its actual domain, that is{x |x = 2n, n ∈ N}.
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(a) Original (b) Permutated

Figure 4.1: Sample square image before and after permutation.

Listing 4.2: Core of the permutation procedure
1 −− purpose: performs the actual permutation algorithm
2 procedure permutation (
3 constant qs, cNs : in natural ;
4 constant x, y : in natural ; −− old coordinates
5 variable x1, y1 : inout natural ) is −− new coordinates
6 begin −− permutation
7 x1 := qs ∗ ( x − cNs) + (y mod qs);
8 y1 := div(y , qs) + cNs;
9 end procedure permutation;

An example of output from this stage of encryption can be seen in figure 4.1,
where aδ = {4, 2, 4} is evident from the permutated image.

4.1.2. Substitution

Likewise permutation makes a change only in input data coordinates, substitution
procedure changes only input data values. The following listing represents the most
significant part from the behavioural architecture.

Listing 4.3: Core of the substitution procedure
1 cp := 0;
2 cc := 0;
3

4 −− actual substitution
5 for i in 0 to img_prsn_size − 1 loop
6

7 read_data(i , p(index( i , 0)));
8



Architectural Implementation Analysis 32

(a) Original (b) Substitued

Figure 4.2: Sample square image before and after substitution.

9 prsp := p(index( i , s_lag)) − p(index( i , r_lag )) − cp; −− mod 2∗∗be;
10 prsc := c(index( i , s_lag)) − c(index( i , r_lag )) − cc ; −− mod 2∗∗be;
11

12 c(index( i , 0)) := p(index( i , 0)) + prsp + prsc ; −− mod 2∗∗be;
13

14 cp := Icond( p(index( i , s_lag )), p(index( i , r_lag )), cp );
15 cc := Icond( c(index( i , s_lag )), c(index( i , r_lag )), cc );
16

17 write_data( i , c(index( i , 0)));
18

19 end loop ; −− i

Since the algorithm comprises two Pseudo-Random Sequences (PRSs),p() andc()
for plain and cipher data respectively, two37 · 232 bit circular arrays need to be
stored. Moreover, the component requires to dialogue with the PRNG, because the
two abovementioned structures are initialized with pseudo-random numbers. There-
fore, the computationally less expensive code (only 32-bit wide sums are required)
is balanced by a more complex management.

It is worth observing that the number 32, as width of elements for circular arrays
(see following subsection), is here reported only because that is the number of bits
which assures, according to [8], better performance. Nonetheless, the component
was designed using a generic valuebe, as well as for the two Fibonacci’s lagsr and
s which take the namer_lag ands_lag respectively.

An example of output from this component can be seen in figure 4.2. From the
first lines of the right image it is evident that the two vectors were initialized with
poor random numbers.
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4.1.3. PRNG

The Pseudo-Random Number Generator component is not critical in this project as
long as it provides a long enough period and sufficient statistical properties.

According to [10] [11], the PRNG called “R250” was chosen. This PRNG con-
sists in a 250-element vector of pseudo-random numbers maintained as a circular
array. Every new number is computed through a very fast XOR operation, sup-
plying a reliable and small circuit. Finally the vector has to be initialized with a
250 · 232 bit passphrase which, for our purpose, is barely formed by natural num-
bers between 0 and 249.

As well as the substitution component outlined in the previous subsection, the
PRNG was designed with a generic width for the elements in the vector. Neverthe-
less, only the 32-bit version has been tested.

4.1.4. Other Components

It is worth spending some words for componentmemory, as it is used over the
all algorithm, not only for image storage, but also for temporary data processing,
pseudo-random number sequences and data vectors in general. A brief description
of componentmultiplexerwill conclude this subsection.

Memory

Since the first experiment with the permutation’s behavioural architecture, the role
played by this component immediately appeared to be crucial. To try avoiding more
problems in subsequent developments, a general approach that goes under the name
of two-way handshake protocol[13, subsection 17.2.2] was implemented. The pro-
tocol name comes from the fact that two signals are required to get two devices to
communicate:cs (short for “chip select”) tells the memory a read/write operation
is pending, whiledata_ready serves as back signal for statusdata availableand
free bus.

Listing 4.4: Memory entity definition for 2-way handshake protocol

1 entity memory is
2

3 generic (addr_bits : positive ;
4 data_bits : positive ;
5 delay : time);
6

7 port (addr_in : in std_logic_vector(addr_bits−1 downto 0);
8 data_in : in std_logic_vector(data_bits−1 downto 0);
9 data_out : out std_logic_vector(data_bits−1 downto 0);

10 chip_sel : in std_logic ;
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11 mem_write : in std_logic ;
12 data_ready : out std_logic ;
13 clk : in std_logic ;
14 do_init : in std_logic );
15

16 subtype word is std_logic_vector(data_bits−1 downto 0);
17

18 constant nwords : integer := 2 ∗∗ addr_bits;
19

20 type ram_type is array (0 to nwords−1) of word;
21

22 end ;

This solution has at least a couple of advantages. First, it can deal with imple-
mentations where the response time is not fixed. This is the case of the behavioural
architecture in this project. Second, it offers an easy way to move toward a simpli-
fiedone-way handshakewhere only one signal (namelycs) accomplishes the com-
munication protocol. For instance, the Block SelectRAM+ technology, depicted in
section 3.1.2 and utilized in the final part of this project, uses such handshaking
scheme.

To hide the two implementations’ details from programmer, a VHDL package,
defining functions likeread_mem andwrite_mem, was written. The increased
flexibility can be observed in test bench files, since the same test architecture is
indistinctly used for both behavioural and synchronous descriptions.

Multiplexer

The memory entity abovementioned is a common resource shared by almost every
component in the system. To avoid bus conflicts between concurrent accessing
devices a behavioural asynchronous architecture of a multiplexer was designed. The
entity, taking advantage of thegenericfacility described in section 3.2.4, provides
up to four inputs for as many as components, which are automatically selected by
a ‘1’-value of the multiplexedcs signal. An opportune statement asserts during
simulations that two devices will never access the bus simultaneously.

As final remark, the same entity can also be utilized in conjunction with the
tristate buffer (BUFT) technology supported by some FPGAs.

4.1.5. Entire System

The whole system is built up instantiating components for permutation, substitution
and PRNG entities outlined in the previous subsections.
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(a) Original (b) Encrypted

Figure 4.3: Sample square image before and after one-round encryption.

This architecture, instead, takes care of the coordination aspect among the dif-
ferent parts the system is composed of. After receiving a start signal, a controller
provides a key for permutation component, which is started immediately after. Ini-
tialization of the two substitution’s vectors with pseudo-random numbers provided
by the PRNG is the next step, which is followed by a request of substitution on the
permutated data. Adone signal raised to ‘1’ will notify that one-round encryption
is completed. Data to and from the memory located in the test bench architecture
are multiplexed using the component described in subsection 4.1.4.

The final result can be evaluated from the two images reported in figure 4.3.

4.2. Some Improvements

While so far the hardware feasibility of the algorithm considered in this work has
been proved, the present section overlooks a limit of the first implementation just
discussed and offers a new approach calledone-shotthat will be described in detail
in section 4.3.

4.2.1. Limits and New Ideas

The algorithm presented in chapter 2 belongs to the class of algorithms calledblock
cipher, since it works on blocks of data (see section 2.1.2). The reason why the
algorithm cannot be seen as astream cipher(which operates on the plaintext a bit
at a time) is due to the permutation performed by chaotic Kolmogorov flows on the
input data. If the entire system is looked at as ar-round product cipher, the data at
the output of the first round is already written in an apparently random order and
the following round has to wait for the first one to be finished.
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Even if a subset of the image is chosen, the situation does not change. Con-
sidering the partitionδ = {n1, . . . , nk} of the Kolmogorov flowTn,δ, wheren =∑k

i=1 ni, it is known from section 2.2.2 that the functionTn,δ scrambles data from
its domain[Ns, Ns + ns) × [0, n) to the codomain[0, n) × [Ns, Ns + ns), where
Ns is the left border of the vertical strip which contains the points that are going to
be transformed. As can be seen, even working on a narrower range of data like an
output strip, the subsequent round still has to wait for the previous one, since the
input and output strips are horizontal and vertical, respectively.

In light of these considerations, afull loop unrolling [3] architecture, where ther
rounds are chained together to form an asynchronous cryptosystem, is meaningless.
Hence, it seems no optimization can be attained working at round level, that is to
look at the system as a set ofr blocks, one for each round.

4.2.2. Using the Inverse Kolmogorov Flow

To overcome the problem of the block ciphering and achieve some improvements,
a one-round black box is opened.

In the first solution presented in subsection 4.1.5, the permutated data is writ-
ten onto the memory to be read again by the following substitution process. If it
is possible to feed the substitution component with data just elaborated by the per-
mutation block, not only area would be saved, but also some clock cycles. In fact,
by connecting the two major blocks together, at least one write and one read opera-
tion is eliminated, leading to potentially less area occupancy due to multiplexer and
other logic for memory bus arbitration and virtually zero transfer time between the
two components.

However, the idea just explained cannot be immediately put into practice. In-
deed, the Kolmogorov flowTn,δ, as illustrated in [10] and summarized in sec-
tion 2.2.2, shuffles data transforming an ordered sequence of coordinates(x, y) ∈
[0, n)× [0, n), into a pseudo-random sequence(x′, y′) ∈ [0, n)× [0, n), while sub-
stitution re-reads the same sequence of coordinates(x′, y′) in a sequence fashion
again.

The difficulty can be dodged exploiting the inverse Kolmogorov flowT−1
n,δ . Rang-

ing coordinates(x′, y′) between0 andn − 1, an anti-permutation component will
produce an ordered stream of data picking up the values in a pseudo-random ba-
sis from the plaintext image. Now, permutated data can be directly used as input
for the substitution block without violating the algorithm functionality. It is worth
noticing that the problem due to coordinate scrambling is not vanished. Simply the
input values, in the place of the output data, are now read in an apparently random
fashion.
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4.2.3. Packing atoms

Throughout the last subsection, the general termdatawas used to refer to a unspeci-
fied amount of bits manipulated by either permutation and substitution components.
In the matter of fact, this situation is slightly different.

Reconsidering what is stated in section 2.2.2, a larger value for the siden of
the square image gives a more secure algorithm. Withn = 64, for instance, about
250 possible keys are available. This value is close to the one obtained with DES
[10]. Because the amount of memory for data storage is limited, increasingnmeans
reducing the number of bits undertaken to any single permutation operation. The
lower bound is obviously represented by the minimum physical quantity of infor-
mation, i.e. one bit. To avoid ambiguity, let define the termatombe the unity of
data processed by the permutation. If variableatom is the representative in VHDL
of atoms, then

0 ≤ atom < 2atom_bits

whereatom andatom_bits are natural numbers.
On the other hand the period of cycle for the Add With Carry and Subtract With

Borrow PRNGs used in the substitution component depends proportionally on the
baseb within which pseudo-random numbers are generated. Thus, the greater the
base, the longer the period. For this algorithm the author choseb = 232 according to
the table at the end of [8], which implies 32-bit width for data. To avoid ambiguity
again, let us define the termprsn(pseudo-random sequence number) as the unity of
data processed by the substitution. Ifprsn is the corresponding variable, then again

0 ≤ prsn < 2prsn_bits

whereprsn andprsn_bits are natural numbers, but where onlyprsn_bits = 32 is
meaningful.

For what is stated above, it should be clear that permutation and substitution
can be tied together only if atoms just permutated are padded to the width ofprsn.
However, this practical procedure, besides changing the original algorithm version,
wastes a considerably amount of time and resources. The solution presented in
this work, instead, consists of using anatom packerto fill up a prsn_bits-bit wide
vector withatoms.

4.3. One-Shot Approach

To translate the ideas described in the previous section into VHDL code, a rewriting
of the entities for permutation and substitution processes is inevitable. In the first
implementation, both components operate independently from each other. In this
second attempt, more cooperation is required. This is due to the fact that one-round
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encryption is accomplished with only one pass for each data in the place of two for
the first implementation. From this it derives the nameone-shot.

4.3.1. Permutation One-Shot

The new entity of the function permutation, whose a block diagram is shown in
figure 4.4 on the following page, is provided with four input signals:qs andcMs,
which refer to the numbersqs andMs of the inverse Kolmogorov flowT−1

n,δ defined
in section 2.2.2, and the signalsx1 andy1, which refer to the coordinates of atoms
at the output. The range of the last two signals is from 0 ton−1, wheren represents
the number of atoms on one side of the square image.

Given these input values, the processactual_permutation can work out the
coordinatesx and y for the atoms of the plainimage. The subsequent process
read_atom can easily read the newatom from the memory with the relative ad-
dress of the first image location

atom_indx = y · n + x

and pass the value to thepack_data which will in turn notify that a newprsn is
available when a sufficient number of atoms has been packed.

In the former description, an important detail has been deliberately omitted.
What will happen if the memory from whichread_atom reads atoms does not
contain oneatom per location? The image can still be seen as a vector of atoms,
but atom_indx can no longer be used as a memory address. Nevertheless, the
component has been designed to also handle this situation.

Variableatom_indx, as shown in figure 4.5 on page 40, contains all the nec-
essary information to extract the correct addressaddr and the positionatom_pos
of the atom included in the datum fetched from the memory. Constantsside_bits
anddata_bits are component’s generics that represent the width of coordinates and
permutation data output, respectively.

4.3.2. Boundary

This component provides one-shot permutation for valuesqs andcMs and passes
over signalsx andy (see figure 4.6 on page 40).

The purpose of this entity is not strictly necessary, since the knowledge ofx, y
andδ is sufficient to evaluate variablesqs andMs of the algorithm. However, taking
advantage of the fact thatx andy increase sequentially from 0 ton − 1, the logic
necessary to calculateqs andcMs is shrunk to a simple check of the form

Listing 4.5: Simple check statement used in boundary component
1 if x = 0 and y = nMs then
2
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data

new_data data

new_atom atom

x1 cMs qsy1
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actual_permutation
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Figure 4.4: Block diagram of the component permutation architecture one-shot.
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[y · n] = side_bits + (side_bits + 1)︷ ︸︸ ︷
addr atom_pos︸ ︷︷ ︸

log2

(
data_bits
atom_bits

)
Figure 4.5: Splitting ofatom_indx for one-shot permutation general case.

new_ptr
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x0 y0 cMs qs

xi yi

boundary

Figure 4.6: Boundary component.
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3 qs <= ...
4 cMs <= ...
5 nMs := ...
6

7 end if ;

wherenMs is the nextMs, that is the upper bound of the currentδ-partition.

4.3.3. Substitution One-Shot

A careful study of the substitution procedure revealed that the component could be
decomposed in three sub-entities shown in figure 4.7 on the next page: two PRSs
and one adder. Briefly introduced here, this component will be resumed also in
subsection 4.4.1 where the meaning of the dashed and dotted lines is explained.

A Pseudo-Random Sequence is simply the class of PRNG studied in [8] and
outlined in section 4.1.2 (see also variableprsp andprsc in listing 4.3 on page 31).
Its purpose consists in providing new pseudo-random numbers by summing two op-
portune elements, taken from anr-long vector ofprsns, and a value supplied by the
above entity. At cost of a 32-bit input signalprsn0 and two control flagswr_prsn0
andwr_done, componentprs has also been provided with writing capabilities in-
stead of using a different entity to update the vector with the new generated value.
In doing so, a 2-input multiplexer for memory arbitration has been saved. Finally,
two instances ofprs are necessary in order to maintain as many as pseudo-random
number vectors, one for plain data (PRSP) and one for cipher data (PRSC).

The adder’s function simply consists of summing up two pseudo-random num-
bers, generated by PRSP and PRSC, with the new value coming from the permu-
tation one-shot component. The result represents the 32-bit ciphered value at the
output of the substitution one-shot.

4.3.4. PRNG

The Pseudo-Random Number Generator has not been altered from the first imple-
mentation since its utility is only for the initialization phase.

4.3.5. System One-Shot

The component system one-shot consists of a controller with a double function: it
generates the output coordinatesx1 andy1 in a sequential manner and saves the ci-
phered value at the output of the substitution one-shot back to the memory. It should
be clear at this point that more than one coordinate increment is necessary in order
to generate one cipher output. To accomplish this task, the current component needs
to have some kind of feedback from permutation and substitution components.
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Figure 4.7: Block diagram of the component substitution architecture one-shot.
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P1S S1P S1C RNG CTR
MII R

MIO W
MSP R/W W
MSC R/W W
MRV R/W

Table 4.1: Summary of read and write access to memory per system’s component.

4.3.6. Entire System

Connecting together all components so far described, the whole system can be rep-
resented with the block diagram drawn in figure 4.8 on the next page.UBD, P1S,
S1S stand for boundary, permutation one-shot and substitution one-shot, respec-
tively; the two blocksCTR constitute, in realty, just one entity, which corresponds
to the system one-shot and the signalsnew_pdata andnew_cdata represent the
abovementioned feedback. In the picture are also shown several memory areas
which the system needs to operate.MII, MIO, MSP, MSC andMRV are short for
Memory Image Input, Memory Image Output, Memory Substitution Plain, Mem-
ory Substitution Cipher and Memory pseudo-Random Vector, the last belonging to
PRNG.

4.4. Using More Than One Memory

Version one-shot of the cryptosystem was presented in the prior section, at the end
of which it was also said that blocksMII, MIO, MSP, MSC andMRV serve as
memory areas to perform one round of the encryption process. As can be seen form
figure 4.8 on the following page, these memory areas are connected to different parts
of the system, each of which can access its own bank of memory only when the other
components are not using the shared memory bus. The situation is summarized in
table 4.1.

What will happen if eachMII, MIO, MSP, MSC andMRV, in place of rep-
resenting an area of the same memory, constitutes a memory instance by itself,
separated from the others? A double advantage will be achieved. First of all, each
component will access its own memory bank regardless other component I/O re-
quests; second the whole system will benefit from a reduction in area because mul-
tiplexers for memory bus arbitration are no longer needed. In realty the reduction
is not so drastic, mainly because multiplexers are just a routing problem and then
because some memory banks necessarily need to be accessed by two components.
In fact, reading table 4.1 by rows, it is immediately clear thatMSP andMSC need
to be initialized by PRNG.
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Figure 4.8: Block diagram of the whole one-shot architecture of the system.
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4.4.1. Substitution one-shot multi-memory

In this work not all memories have been split up due to lack of time. Neverthe-
less, the above-mentioned idea was successfully tested on version one-shot of the
substitution component. Recalling the block diagram from figure 4.7, substitution
one-shot is composed by two memories, one for the plain vector and the other for
the cipher vector. If the two memories are looked at as a single bank separated from
the main memory, substitution one-shot does not share any I/O access with other
components during its working (writing operations by PRNG are required only dur-
ing initialization phase), whereas the two PRSs have to wait for each other. This
is what has been done with the configuration of the system that carries the name
osh2mem, and was, moreover, the first attempt in using the Block SelectRAM+
technology.

If also the two PRSs can operate independently,MSP andMSC constitute two
component instances and can be accessed in parallel. For this case, the configuration
name isosh3mem.

Finally, an ulterior configuration calledopr3syn was tested. Simply changing
the order with which components of substitution one-shot talk to each other, the
required values for theprsp andprsc calculations can be read from the two vectors
before the corresponding permutated input data is actually available. In other words,
new values forprsp and prsc are worked out as soon as substituted data at the
adder’s output is ready.

What said in the prior subsection, the access to the memory introduces a final
important observation which claims, before going into detail, a brief introduction.

Let’s suppose that read and write operations are equivalent in terms of time
required for execution and that that time is worth one unity. Let’s also suppose the
square image being encrypted has a side containingn atoms andm prsn-long data,
both defined in subsection 4.2.3.

Considering the first implementation discussed in section 4.1, two distinct passes
were necessary to deploy an encryption. The former is the permutation that works
manipulating atoms:n× n unities of time are required to read all of the image and
n× n more unities to save the permutated one. The latter is the substitution which
works processingprsn data:m×m+m×m unities of time are necessary to read
and write all image’s data, for each of which2 + 2 read and1 + 1 write operations
are required for the two PRS’s vectors maintenance. Summing up everything:

[n× n+ n× n] + [(m×m+m×m) + (2 + 2)m+ (1 + 1)m] =

2(n× n) + 2(m+ 3)m =

2(n× n+m×m)

since surelym� 3.
With the second implementation presented in section 4.2, some improvements

have been reached. Because permutation does not save atoms to memory, but passes
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them directly to substitution, the same reasoning led above gives the following re-
sult:

[n× n] + [m×m+ (2 + 2)m+ (1 + 1)m] =

n× n+m×m

showing the time has been halved.
Performance can further be improved. Withopr3syn configuration a realn ×

n + m × m unities of time can be achieved, since the update of the two PRSs’
vectors occurs during the permutation fetching phase. If two memories were used
for input and output images, the time would decrease ton × n, since permutation
and substitution are simultaneous andn� m.

In order to reduce this limit, more work on permutation optimization is required.
This does not seem to be a trivial task due to the high confusion introduced by the
chaotic Kolmogorov flows in coordination calculation.



5 Performance Evaluation

This chapter presents the results obtained from the synthesis of the two major im-
plementations described in chapter 4. The first section will introduce the meaning
of the parameters used to measure those implementations. The subsequent section
describes and comments the collected measurements. The chapter will conclude
with a brief comparison to implementations of other algorithms.

5.1. Data Interpretation

Most of results presented in this chapter are obtained from running commands and
tools of subsection 3.3.3 and 3.3.4, where synthesis and place-and-route procedures
were outlined. From the reports of those programs, in fact, is possible to extract the
following informations:

Slices, flip-flops and LUTs These three parameters are related to the area and re-
sources occupied by the synthesized system. Especially meaningful is the
number of slices which represent the number of Configurable Logic Block
(CLB) utilized (see section 3.1.2). To note that no established metric ex-
ists to measure the hardware resource costs. Area measurement in term of
CLBs, indeed, does not yield a true measure of actual FPGA utilization, since
hardware resources within CLB slices may not be fully utilized by the place-
and-route software so as to relieve routing congestion. For a summary of the
available resources see table 3.1 on page 17.

∆max The maximum delay is calculated taking into account every possible path in
the circuit between two points. For each paths, the tool computes the time
necessary for a signal to transit along the path and get stable.

fmax The maximum frequency is the reciprocal of the maximum period the software
calculates for system under test. It can be used to set the oscillation frequency
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of the clock generator on board of the FPGA and is taken into account by the
post place-and-route simulation takes into account the parameterfmax just
mentioned.

Knowing nd, the number of bits elaborated by the component, andt, the time
taken to elaborate those bits, the parameterthroughputTP , defined as

TP =
nd
t

(5.1)

can provide a coefficient to describe performances of the system under test.
Unfortunately throughputTP depends on the frequency the system runs. If, for

some reason, the code is compiled and ported on another FPGA and the frequency
changed, the value calculated forTP is no longer valid. To overcome this inconve-
nient, the coefficientTPcc has been defined in this work, where the subscript stand
for clock cycles

TPcc =
nd
ncc

(5.2)

The parameterncc can be obtained from the following simple formula:

ncc = t · f (5.3)

where the quantityt is that used in eq. (5.1) andf is the clock frequency at which
the FPGA runs.

It is also worth spending some words, before concluding this section, about
technical details of the image used as input sample by the several versions of the
encryption algorithm. The image comes in the Portable Graymap (PGM+) format,
which divides the image in two parts: an header of 13 bytes — which contains image
specifications, as sub-format, image size and levels of gray — and the body of the
image. The sample picture consists in a64 × 64 256-level image. This guarantees
4,096 bytes of data,215 bits and 1,024 32-bit long words.

5.2. Data Analysis

In the present section the results obtained from the simulations will be presented by
means of tables and commented in two separated subsections.

5.2.1. First Implementation

The purpose of the first implementation widely discussed in section 4.1 consists in
proving the feasibility of the algorithm presented in chapter 2.

In order to have a clearer view of the component and subcomponent interdepen-
dencies, figure 5.1 on the next page shows the tree diagram of the logical structure
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Figure 5.1: Tree diagram of the first implementation.

of the whole system. Using different font, the picture discerns real components,
which have an actual entity, from logical components.SYS, for instance, stands
for systemand comprehends the entire system outlined in subsection 4.1.5. Sim-
ilarly, PER, SUB and RNG are shorts forpermutation, substitutionand PRNG
components, depicted in sections 4.1.1, 4.1.2 and 4.1.3, respectively.RAM, repre-
senting the memory from and to which the data are written, is considered external
to the system, whereas the multiplexerMEM_MUX is taken into account inSYS’s
evaluation. These last two forms the logical component “memory” of the figure.

With the aid of the formulæ from the prior section, table 5.1 on the following
page can be built. Values from column “Slices” to column “fmax” have been ob-
tained from the log files of the place-and-rout process which follows a synthesis
that was set for a speed optimization. As it can be seen from the notes at the bottom
of the table, the number of slices does not reflect the real area utilization since some
LUTs are used as routes, through which signals pass without being modified.

The notes at the bottom of the table also show thatatom and memory cells were
both 8-bit wide. This means that one atom was processed per reading cycle and that
4096 cycles were necessary to complete the task. For the case in which theatom
was 2-bit long, the number of atoms to process would be quadrupled and so the time
t, while the number of bitsnd would be constant. This decreases the component’s
performance by a factor of 4.

On the other hand,SUB’s data are 32-bit long and four reading cycles are nec-
essary to fill up aprsn which justifies the very low rate in the last column. If cells’
width was 32 bits, only one cycle would be required and the performance of this
component would do increase by a factor of four.

That was the main reason that yield to a new version depicted in section 4.4 and
analyzed in the remaining part of the chapter.
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5.2.2. One-Shot Implementation

In this section the procedure followed for the first implementation will be repeated
for the version one-shot of the system.

The tree diagram of the present implementation is shown below. As it can be
noticed, version one-shot is more complex and spans across several components and
instantiations. “Controller” is the logical component whose function is performed

SYS
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�
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H
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HH

PRS MSC MSC_MUX

RNG MEM_MUX

Figure 5.2: Tree diagram of the implementation one-shot.

by substitution one-shotdescribed in subsection 4.3.5;CTR_MUX is the multi-
plexer that allows the initialization of the memory areasMSP andMSC. “Permu-
tation” andSUB are described in section 4.3.1 and 4.3.1, respectively.MSP_MUX
and MSC_MUX multiplexers are non used if the two memory banksMSP and
MSC actually correspond to two different memory instantiations, as explained for
versionsosh3mem andopr3syn in section 4.4.1.RNG, in the end, is exactly the
same architectures used in the prior section.

Not for all sub-components a test bench have been provided, especially because
many of them are to small or simple to justify the design of a new architecture that
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proves their functionality. It was preferred to assemble them in bigger entities which
worked as the components they were derived from, and to write a small wrapper
which used existent test benches.

In doing so, it was not possible to measure directly resource demands and per-
formances for all entities. Nevertheless, the log files of the synthesis process was
used to grasp an approximation of the values of slices, flip-flops, maximum de-
lay and maximum frequency. These components are marked “only synthesis” on
table 5.2 on the following page. On the other hand, for the wrapped version of com-
ponents “Per” andS1S, performances have been checked using the same value of
clock frequency as that used in the first implementation. This allows a rough but
useful comparison between the two implementations.

Permutation

The new architecture of “Per” results slightly faster than its counterpart presented
in table 5.2, because it is less complex and therefore better synthesisable — the
maximum frequency has been increased by12 MHz. The Tcl script revealed also
that 5 clock cycles per atom and 22 clock cycles to build a new packed data were
necessary in the average.

Substitution

New substitution has been tested in its version provided with only one memory
instance forMSP andMSC (serial), since this is the version that closer reassembles
the behaviour of theSUB on table 5.2. Despite of the higher values ofTP andTPcc,
the performance does not surprise because the generic parametersprsn_bits and
data_bits were set for 32 bits. This means that only 1 reading cycle, in place of 4
of the first version, was necessary. To elaborate oneprsn — i.e. read it, calculate
the new value and write it back to the memory — an average of 31 clock cycles per
shot was required.

System

The three versions of the one-shot system widely described in section 4.4.1 have
been fully tested. It is worth noticing that values of timet presented in table 5.2
do not include the time required for initialization of the substitution’s vectors. As
it was expected, no substantial differences in terms of area exist between the three
solutions, while great improvement, which pushesTP from 18 Mbit/s of the first
version up to the present67 Mbit/s, was achieved.

The first speed up (see rowosh2) is due to the fact that permutation and sub-
stitution communicate directly to each other without accessing the memory. In this
case 25 clock cycles are necessary for reading, permutating and packing each data,
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while 31 cycles are required for accessing the memory 6 times and thus perform-
ing a substitution. This last value is reduced to 16 clock cycles with versionosh3,
where the two PRS vectors are accessed simultaneously. Just one cycle — i.e. the
time to compute the sum — is necessary in the third architecture, since substitu-
tion’s accesses are paralleled with permutation’s.



6 Conclusions

The core operations of an encryption algorithm that makes use of the Kolmogorov
flows was presented after an introduction on the significance of cryptology and
chaos theory. The importance of developing tools such as VHDL and FPGA was ex-
amined and a design methodology established. A first architecture whose aim was to
demonstrate chaotic cipher suitability for hardware implementation was discussed,
limits investigated and a new approach called one-shot realized. Each solution was
analyzed in order to report their area occupancy and throughput. The best result of
677 slices and1.067 Mbit/clk has been obtained with the least system architecture
calledopr3.

As predicted in section 4.4.1, the real bottleneck is now represented by the “Per”
component: the ratio permutation over substitution is currently 25/16. More work
on this project should decrease this ratio making the former component more effec-
tive.

A hint could come from the observation that, under some conditions, a number
of subsequent packed data at the output of permutation element are built picking
out atoms from the same set of memory cells but with different position within each
memory element. The present architecture do not detect this specific case and re-
peatedly reads the same values from the memory. One of these cases is represented
by the simulation analyzed in this subsection.

In [4] several old and more recent algorithms have been implemented in VHDL
and tested on a FPGA, a Xilinx Virtex XCV1000BG560-4. Comparing the results
presented in section 5.2.2 to the performance evaluation tables found in that report,
it appears clear that this algorithm places among the first implementation attempts
made by the authors of the cited work. It rather reveals that it is far way form the
4.86 Gbit/s of Serpent architecture PP-32 or the2.4 Gbit/s of RC6 architecture
SP-10-2.

In the other hand, those architectures hardly surprising are much more greedy in
term of area consumption: from 2,600 to nearly 11,000 slices against the 677 slices
of the fastest version of the present work.
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AWC Add With Carryis a class of pseudo-random number generators.

BUFT A tristate bufferis a driver with an additional control pin that let the
output floating when disabled.

CBC Cipher Block Chaininguses the output of one encipherment step to
modify the input of the next, so that each ciphertext block is dependent
on all the previous plaintext blocks.

CFB CFB or Ciphertext Feedbackis an operating mode for a block cipher.
CFB is intended to provide some of the characteristics of a stream cipher
from a block cipher. CFB is a way of using a block cipher to form
a random number generator. The resulting pseudorandom confusion
sequence can be combined with data as in the usual stream cipher. CFB
assumes a shift register of the block cipher block size. An initial value
first fills the register, and then is ciphered. Part of the result, often just
a single byte, is used to cipher data, and the resulting ciphertext is also
shifted into the register. The new register value is ciphered, producing
another confusion value for use in stream ciphering. One disadvantage
of this, of course, is the need for a full block-wide ciphering operation,
typically for each data byte ciphered. The advantage is the ability to
cipher individual characters, instead of requiring accumulation into a
block before processing.

CLB A Configurable Logic Blockis a physically co-located grouping of LUT’s,
flip flops, and carry logic.

CPU A CPU is the part of a computer that interprets and executes instruc-
tions.

DES Data Encryption Standardis a product cipher that operates on 64-bit
blocks of data, using a 56-bit key.
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DLL The Delay-Locked Loopscan be used to eliminate skew between the
clock input pad and the internal clock input pins throughout the device.
Moreover, the DLL provides advance control of multiple clock domains
and may operates as a clock mirror.

ECB Electronic Codebookis the straightforward use of a block cipher algo-
rithm to encipher one block: a block of plaintext always encrypts into
the same block of ciphertext.

EEPROM An Electrically Erasable PROMis a non-volatile storage device using
a technique similar to the floating gates in EPROMs but with the capa-
bility to discharge the floating gate electrically. Usually bytes or words
can be erased and reprogrammed individually during system operation.

EPROM An Erasable-Programmable Read-Only Memoryis a PROM that can be
erased by exposure to ultraviolet light and then reprogrammed.

FPGA A Field-Programmable Gate Arrayis a type of logic chip that can be
programmed. An FPGA is similar to a PLD, but whereas PLDs are
generally limited to hundreds of gates, FPGAs support thousands of
gates. They are especially popular for prototyping integrated circuit
designs. Once the design is set, hardwired chips are produced for faster
performance.

GUI An interface for issuing commands to a computer utilizing a pointing
device, as a mouse, that manipulates and activates graphical images on
a monitor.

HDL Hardware Description Languageis a kind of language used for the con-
ceptual design of integrated circuits. Examples are VHDL and Verilog.

IC An Integrated Circuit is a tiny slice or chip of material on which is
etched or imprinted a complex of electronic components and their inter-
connections.

IEEE The Institute of Electrical and Electronics Engineers, founded in 1884,
is an organization composed of engineers, scientists, and students. The
IEEE is best know for developing standards for the computer and elec-
tronics industry.

IOB a physically co-located group of buffers, latches, flip flops, and input-
/output pads used for sending signals off of the FPGA and receiving
signals onto the FPGA.
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LUT A Look Up Tableis a block of logic in a CLB that uses SRAM technol-
ogy to implement asychronous digital logic.

MPGA TheMetal Programmed Gate Arrayfamily provides a low-risk conver-
sion path from programmable gate arrays to production quantity de-
vices. By significantly reducing the production costs of a product with-
out technical or time-to-market risks, MPGAs prolong the life cycle of
a finished design.

NCD An FPGA file that holds mapping, placement, and routing data about a
design implemenation. A valid NCD can hold mapping information, or
mapping/routing information, or mapping/placement/routing informa-
tion.

NGD An FPGA file that holds logical netlist information about a design.

NGM An FPGA file that holds information about optimized logic and netlists.
An NGM file is used by thebackannotationprocess to reconstruct the
original netlist from the optimized NCD netlist for timing simulation.
This enables you to use the functional simulation testbench in timing
simulation.

PCF A file that contains timing and location constraints of the logic in the
physical domain.

PGM+ Portable Graymapformat for gray scale images.

PGP Pretty Good Privacyis an encryption program based on RSA public-
key cryptography. PGP allows users to exchange files and messages,
with both privacy and authentication, over all kinds of networks. Be-
cause PGP is based on public-key cryptography, no secure channels are
needed to exchange keys between users. PGP can also provide digital
signatures for files or messages.

PLA A Programmable Logic Arrayis a PLD that offers flexible features for
more complex designs.

PLD A Programmable Logic Deviceis an integrated circuit that can be pro-
grammed in a laboratory to perform complex functions. A PLD consists
of arrays of AND and OR gates. A system designer implements a logic
design with a device programmer that blows fuses on the PLD to control
gate operation.

PRNG A Pseudo-Random Number Generatorrefers to any computer random
number generator which is not explicitly labeled as “physically ran-
dom”, “really random”, or other such description.
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PROM A Programmable Read-Only Memoryis a memory that can be pro-
grammed only once.

PRS A Pseudo-Random Sequenceis a sequence of pseudo-random numbers
generated by a PRNG.

RAM Pronouncedramm, acronym forRandom Access Memory, a type of
computer memory that can be accessed randomly; that is, any byte of
memory can be accessed without touching the preceding bytes.

RCS A version control system that automates the storing, retrieval, logging,
identification, and merging of revisions. RCS is useful for text that
is revised frequently, for example programs, documentation, graphics,
papers, and form letters.

RISC A Reduced Instruction Set Computeris a type of microprocessor that
recognizes a relatively limited number of instructions.

RSA An public-key encryption technology developed by RSA Data Security,
Inc. The acronym stands for Rivest, Shamir and Adelman, the inventors
of the technique. The RSA algorithm is based on the fact that there is
no efficient way to factor very large numbers.

RTL Register Transfer Languageis a kind of Hardware Description Lan-
guage (HDL) used in describing the registers of a computer or digital
electronic system, and the way in which data is transferred between
them.

SDF A Standard Delay Formatfile holds timing information for circuit sim-
ulation.

SRAM A Static RAMis a device in which each bit of storage is a bistable
flip-flop, commonly consisting of cross-coupled inverters. It is called
“static” because it will retain a value as long as power is supplied, unlike
dynamic random access memory which must be regularly refreshed.

SWB Subtract With Borrowis a class of pseudo-random number generators.

VHDL VHSIC Hardware Description Languageis a large high-level VLSI de-
sign language with Ada-like syntax. It arose out of the United State gov-
ernment’s Very High-Speed Integrated Circuit (VHSIC) program. The
DoD standard for hardware description, now standardised as IEEE 1076.

VHSIC Very High-Speed Integrated Circuitis a very high-speed computer chip
which uses LSI and very large scale integration VLSI technology.
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VLSI Very Large-Scale Integrationis the process of placing thousands (or
hundreds of thousands) of electronic components on a single chip.

LSI Large-Scale Integrationis the process of placing hundreds of electronic
components on a single chip.
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